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In order to control systems as complex as tokamaks and accelerators, methods

employing neural networks appear to be promising candidates. In this paper we

describe three systems where we have attempted to use a neural network to predict

their behavior. We examine two quantities which can determine feasibility for

control of complex systems: dimension and entropy.

1. Introduction

Biological systems seemly with ease are able
to predict and control complex systems without
having an underlying knowledge of the physics of
the system. For example, a seal is able to balance
a stick on its nose for an extended period of time
without any knowledge of Newtonian mechanics.
Artificial neural network models were constructed
to mimic in some ways the characteristics of the
brain. As a result, in recent years neural networks
have been used extensively in a variety of areas
such as high energy physics, nuclear fusion, and
accelerator physics. Most recently, research fields
in neural network applications have expanded to
solution of dynamic problems such as time series
prediction.

In this paper we concentrate on the aspect of
prediction and control of complex systems by
neural networks. We first begin by describing the
basic properties of a neural network. We then
present three systems where we attempt
prediction by a neural network. From a time series
of some variable of the system we then show two
characteristics which can be extracted which
determine

predictability and controllability :

dimension and entropy.

2. Neural Network

Formally speaking a neural network is a
system composed of many simple processors
(units) and interconnections among the units. As
there are a lot of excellent textbooks of
introduction of neural networks ! we present here
only a minimum description. Figure 1shows the
structure of a simple feed-forward neural network
composed of 3 layers. Data flows from the input
layer on the left hand side to the output layer on
the right hand side. Between the input and output
layers there is a hidden layer. A weight is
assigned to each connection between two units
belonging to adjacent layers. The weighted data
are summed up at each unit (neurons) and the
result is subject to a nonlinear transformation
assigned to the unit, usually something like a
smooth step function to mimic the behavior of
actual neurons. The weights are usually
determined wusing the error-back propagation
algorithm " which makes the deviations of the
network values from the desired values as small
as possible for a given set of training data. This
type of network has achieved great success in spite
of the large number of training data sets and
iterations required to achieve good convergence
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Figure 1 Simple picture of a multi-layer neural network

properties. This is mainly due to the fact that
neural networks can learn any nonlinear mapping
function given enough nodes in the hidden layer

and training sets.

3. Examples of Prediction

In this section we show three examples where
we have attempted to predict the behavior of each
system with a neural network.

First we look at the Lorenz map. This system
has been thoroughly studied so we refer the reader
to other references for a more detailed treatment
2, In Figure 2 we show the time series of the X

component of the Lorenz attractor which was run

30

for 10* interations with the parameters given in
the figure. A neural network fit to the next time
step from the input previous three time steps is
also shown in the figure which overlaps the
original data showing that the network has
learned the system and can predict forward in
time.

Next we show results from application of
tokamak control. In a tokamak error in
determination of the vertical position of the
plasma-current-center (Zs) by standard linear
regression sensor algorithms result in Vertical
Displacement Events (VDE) which can cause
severe damage in tokamak fusion reactors like
ITER. In this problem we constructed a neural
network consisting of input magnetic field probe
data and one output node with the Zs position.
The original data and the neural network
prediction are shown in Figure3. With this
network we were able to obtain very high accuracy

in the determination of the plasma position
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Figure 2 Time series of the X component of the Lorenz attractor system with 6=10, b=8/3, and y =28 with initial values
of (X,Y,Z) = (0, 1, 0) showing 2000 of 104 iterations (see cited references for description of parameters).
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Figure 3 Time series of the vertical position Zu of the plasma during a single shot in JT-60 U

enough to eliminate VDE 9.

In the third system we examine the
predictability for charged particle beam cooling
methods. In the beat wave cooling method a finite
set of laser modes is adjusted to kick a charged
particle beam to cool it. For details of this method
see reference ¥. Using data from a computer
simulation we input the laser light previously
scattered by the beam to predict the next laser
amplitude (A) used to cool a charged particle
beam. It can be seen in Figure 4 that the fit by the
network is not good even though network used in
this case was large (—100 input values).

4. Dimension and Entropy

In the previous section we showed that the
neural network prediction in two cases was very
good and in one case the prediction was not good.
The reason for this can be determined by two
quantities which can be extracted from time series
of the system.

It has been shown that one can predict the
evolution of a system with knowledge of previous
measurement of some physical variable of the
system. The number of previous measurements
needed is referred to as the dimension or the
degrees of freedom of the system. This dimension
can be extracted from the time series of the system

by techniques which can be found in various

references 2,

The degrees of freedom gives us a handle on
the amount of data that is needed for prediction;
however, another parameter is needed to indicate
the time ahead over which the calculation can
predict the behavior of the system. A good
quantity for this is known as the Kolmogorov
entropy which is a measure of the average rate of
loss of information in a system .

The need for both the dimension and entropy
can be seen from the following. If we calculate a
high dimension for a system, then by simply
inputting a large number of previous values of the
system into a neural network it would seem that
we could predict the next step. However, the
Kolmogorov entropy gives us an idea of the limit
on the number of useful previous values. If this
number is large, then inputting a large number of
previous values will not improve predictability.

We calculated these two quantities for all
three systems and summarize the results in Table
1. The dimension and entropy of the Lorenz map
and the tokamak control problem are low,
indicating that a good fit is possible. In the case of
beat wave cooling both the dimension and entropy
are large indicating that predictability is difficult
using a single variable. However, the use of a
large number of variables at the same time may
increase predictability.

FERERIF 2 — b Vol. 3 No. 2

37



0.0004 1

actual
neural network

0.0003

0.0002 /

0.0001

i

0 20

40

60 80 100

kick number

Figure 4 Time series of the laser field amplitude (4 ) used to cool a charged paticle beam.

Table 1 Characteristics of the Three Systems
System Dimension Entropy
Lorenz Map 2 ~0, 06
Tokamak Control 4-5 ~0.05
Beat Wave Cooling 30-40 ~0.1-0.2

5. Discussion

We have shown in this paper that various
systems can be predicted by a neural network. In
some systems predictability is easy and others
difficult. We have shown that two quantities are
helpful in determining the predictability and
possible control of systems from the time series of
some relevant parameter describing the system.
These tools are useful in constructing a neural
network to control the system. We have found that
prediction is fairly easy for low dimensional
systems where the entropy of the time series is
low. However, in high dimensional systems with
high entropy such as cooling, the control of the
system is difficult by a neural network due to the
size of the network that is necessary and the time
over which prediction is possible.

In this paper we examined only the feasibility
of control of complex systems by looking at the
predictability. We are curently attempting actual
control in a tokamak system. The dimensionality

calculations which we have discussed only can
measure the degrees of freedom described by the
time series. If there are underlying degrees of
freedom, they are not detected. We speculate that
when control is applied to a system, the feedback
may expose more of the underlying degrees of
freedom of the system, thus requiring a larger
neural network to describe the problem.

Finally, however, with the proper use of

neural networks machines such as neural
tokamaks and mneural accelerators represent
tantalizing future possibilities. Our group is

currently examining these possibilities.
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